bn:00383900n
Noun Concept
Categories: Knots (knot theory)
EN
Lissajous knot  Billiard curve  Billiard knot  Lissajous knots
EN
In knot theory, a Lissajous knot is a knot defined by parametric equations of the form x = cos ⁡, y = cos ⁡, z = cos ⁡, {\displaystyle x=\cos,\qquad y=\cos,\qquad z=\cos,} where n x {\displaystyle n_{x}}, n y {\displaystyle n_{y}}, and n z {\displaystyle n_{z}} are integers and the phase shifts ϕ x {\displaystyle \phi _{x}}, ϕ y {\displaystyle \phi _{y}}, and ϕ z {\displaystyle \phi _{z}} may be any real numbers. Wikipedia
Definitions
Relations
Sources
EN
In knot theory, a Lissajous knot is a knot defined by parametric equations of the form x = cos ⁡, y = cos ⁡, z = cos ⁡, {\displaystyle x=\cos,\qquad y=\cos,\qquad z=\cos,} where n x {\displaystyle n_{x}}, n y {\displaystyle n_{y}}, and n z {\displaystyle n_{z}} are integers and the phase shifts ϕ x {\displaystyle \phi _{x}}, ϕ y {\displaystyle \phi _{y}}, and ϕ z {\displaystyle \phi _{z}} may be any real numbers. Wikipedia
A knot defined by certain parametric equations. Its projection onto any of the three coordinate planes is a Lissajous curve. Wiktionary
IS A
NAMED AFTER
Wikipedia
Wikidata
Wiktionary
Wikipedia Redirections