bn:00724812n
Noun Concept
Categories: Convex analysis, Mathematical analysis
EN
logarithmically concave function  Log-concave function  Log-concavity  Logconcave function
EN
In convex analysis, a non-negative function f : Rn → R+ is logarithmically concave if its domain is a convex set, and if it satisfies the inequality f ≥ f θ f 1 − θ {\displaystyle f\geq f^{\theta }f^{1-\theta }} for all x,y ∈ dom f and 0 < θ < 1. Wikipedia
Definitions
Relations
Sources
EN
In convex analysis, a non-negative function f : Rn → R+ is logarithmically concave if its domain is a convex set, and if it satisfies the inequality f ≥ f θ f 1 − θ {\displaystyle f\geq f^{\theta }f^{1-\theta }} for all x,y ∈ dom f and 0 < θ < 1. Wikipedia
IS A
HAS KIND