bn:00737287n
Noun Concept
Categories: Mathematical analysis
EN
Lebesgue point
EN
In mathematics, given a locally Lebesgue integrable function f {\displaystyle f} on R k {\displaystyle \mathbb {R} ^{k}}, a point x {\displaystyle x} in the domain of f {\displaystyle f} is a Lebesgue point if lim r → 0 + 1 λ ∫ B | f − f | d y = 0. Wikipedia
Definitions
Sources
EN
In mathematics, given a locally Lebesgue integrable function f {\displaystyle f} on R k {\displaystyle \mathbb {R} ^{k}}, a point x {\displaystyle x} in the domain of f {\displaystyle f} is a Lebesgue point if lim r → 0 + 1 λ ∫ B | f − f | d y = 0. Wikipedia
Wikipedia
Wikidata