bn:02409508n
Noun Concept
Categories: Boolean algebra, Free algebraic structures
EN
free Boolean algebra
EN
In mathematics, a free Boolean algebra is a Boolean algebra with a distinguished set of elements, called generators, such that: Each element of the Boolean algebra can be expressed as a finite combination of generators, using the Boolean operations, and The generators are as independent as possible, in the sense that there are no relationships among them that do not hold in every Boolean algebra no matter which elements are chosen. Wikipedia
Definitions
Relations
Sources
EN
In mathematics, a free Boolean algebra is a Boolean algebra with a distinguished set of elements, called generators, such that: Each element of the Boolean algebra can be expressed as a finite combination of generators, using the Boolean operations, and The generators are as independent as possible, in the sense that there are no relationships among them that do not hold in every Boolean algebra no matter which elements are chosen. Wikipedia
A field of sets whose elements are equivalent to Boolean formulas (or, perhaps more precisely, equivalence classes of Boolean formulas). Starting with a set of n variables which are independent of each other and are called generators, the power set of this set has 2 n members which may be called atoms and are valuations of the n variables: a valuation can be considered to be a set of variables which are "true" under that valuation, or a conjunction of generators (such that variables not included in that set are included in negated form in the equivalent conjunction). Then the power set of the set of atoms yields a set of 2 2 n members which are the elements of the said field of sets. These elements correspond to Boolean formulas: a formula can be considered to be a set of valuations which make the formula true, or a linear combination (i.e., a disjunction) of atoms. Wiktionary
Wikipedia
Wikidata
Wiktionary
Wikipedia Redirections