bn:02553629n
Noun Concept
Categories: Pages using sidebar with the child parameter, Integral calculus
EN
integral of the secant function  Secant integral  integral of secant  integral of the secant
EN
In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities, ∫ sec ⁡ θ d θ = { 1 2 ln ⁡ 1 + sin ⁡ θ 1 − sin ⁡ θ + C ln ⁡ | sec ⁡ θ + tan ⁡ θ | + C ln ⁡ | tan | + C {\displaystyle \int \sec \theta \,d\theta ={\begin{cases}{\dfrac {1}{2}}\ln {\dfrac {1+\sin \theta }{1-\sin \theta }}+C\\[15mu]\ln {{\bigl |}\sec \theta +\tan \theta \,{\bigr |}}+C\\[15mu]\ln {\left|\,{\tan }{\biggl }\right|}+C\end{cases}}} This formula is useful for evaluating various trigonometric integrals. Wikipedia
Definitions
Relations
Sources
EN
In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities, ∫ sec ⁡ θ d θ = { 1 2 ln ⁡ 1 + sin ⁡ θ 1 − sin ⁡ θ + C ln ⁡ | sec ⁡ θ + tan ⁡ θ | + C ln ⁡ | tan | + C {\displaystyle \int \sec \theta \,d\theta ={\begin{cases}{\dfrac {1}{2}}\ln {\dfrac {1+\sin \theta }{1-\sin \theta }}+C\\[15mu]\ln {{\bigl |}\sec \theta +\tan \theta \,{\bigr |}}+C\\[15mu]\ln {\left|\,{\tan }{\biggl }\right|}+C\end{cases}}} This formula is useful for evaluating various trigonometric integrals. Wikipedia
Antiderivative of the secant function Wikidata