bn:02955177n
Noun Concept
Categories: Cardinal numbers
EN
gimel function  gimel hypothesis  
EN
In axiomatic set theory, the gimel function is the following function mapping cardinal numbers to cardinal numbers: ℷ : κ ↦ κ c f {\displaystyle \gimel \colon \kappa \mapsto \kappa ^{\mathrm {cf} }} where cf denotes the cofinality function; the gimel function is used for studying the continuum function and the cardinal exponentiation function. Wikipedia
Definitions
Relations
Sources
EN
In axiomatic set theory, the gimel function is the following function mapping cardinal numbers to cardinal numbers: ℷ : κ ↦ κ c f {\displaystyle \gimel \colon \kappa \mapsto \kappa ^{\mathrm {cf} }} where cf denotes the cofinality function; the gimel function is used for studying the continuum function and the cardinal exponentiation function. Wikipedia
DIFFERENT FROM
Wikipedia
Wikidata
Wikipedia Redirections
Wikidata Alias
EN