bn:03647077n
Noun Concept
Categories: Modular arithmetic, Articles with short description, Integer sequences, Pseudoprimes
EN
Carmichael number  Absolute Pseudoprime  Absolute Fermat pseudoprime  Absolute Pseudoprime Number  Absolute Pseudoprime Numbers
EN
In number theory, a Carmichael number is a composite number n {\displaystyle n}, which in modular arithmetic satisfies the congruence relation: b n ≡ b {\displaystyle b^{n}\equiv b{\pmod {n}}} for all integers b {\displaystyle b}. Wikipedia
Definitions
Relations
Sources
EN
In number theory, a Carmichael number is a composite number n {\displaystyle n}, which in modular arithmetic satisfies the congruence relation: b n ≡ b {\displaystyle b^{n}\equiv b{\pmod {n}}} for all integers b {\displaystyle b}. Wikipedia
A special kind of number in number theory named for mathematician Robert Carmichael Wikipedia Disambiguation
A composite number n that satisfies the modular arithmetic congruence relation b n − 1 ≡ 1 ( mod n ) for all integers 1 < b < n that are relatively prime to n . Wiktionary